Which “Network” Company to Invest in?

Network Going Postal

Randy Wang
Computer Science Department
Princeton University
cs598c
Spring 2005
Which “Network” Company to Invest in?

Which “Network” Company to Invest in?

Which “Network” Company to Invest in?

Which “Network” Company to Invest in?
• Start with a conventional home DSL router
• Users oblivious of “routers”
• Routers are general and transparent

• At the end of the day, it spits out a DVD

• Picked up by a postman
What Is A Postmanet Router?

- The postman may also drop off an incoming DVD

A Postmanet Router

- Basic idea of using DVDs not new
- What is new: general and transparent
 - General:
 - Support for multiple applications
 - Generic infrastructure (public transit system)
 - 2-way communication
 - Multiplexing/demultiplexing onto/from minimum disks
 - Transparent:
 - No manual inspection of DVD content
 - No manual staging, copying
 - No manual handling of acks, losses, duplicates, …
 - Just insert/remove DVDs from the box

Shared Postmanet Routers

- Not necessary: dedicated per-desktop or per-house Postmanet routers
- Technology reality: short fat wires, long thin wires, big disks
 - How do you build systems out of these components?

Outline

- What is Postmanet?
- What is it good for?
- Routing
- End point support
- Conclusions
Advantages

- Wide reach: a truly global “network”
- Great bandwidth potential, technology trends:
 - “Sneaker nets” becoming more powerful
 - Storage density growth > Moore’s Law
 - Wide area bandwidth growth bound by digging ditches, launching satellites, erecting WiMax towers…
- Low cost
- Incremental deployment:
 - Classic chicken & egg problem: infrastructure, applications, users
- Good scalability

Academic Computers

in 1983 and 2003

<table>
<thead>
<tr>
<th></th>
<th>1883</th>
<th>2003</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU clock</td>
<td>3Mhz</td>
<td>3Ghz</td>
<td>1:1000</td>
</tr>
<tr>
<td>$/machine</td>
<td>$80k</td>
<td>$800</td>
<td>100:1</td>
</tr>
<tr>
<td>DRAM</td>
<td>256k</td>
<td>256M</td>
<td>1:1000</td>
</tr>
<tr>
<td>Disk</td>
<td>20MB</td>
<td>200GB</td>
<td>1:10,000</td>
</tr>
<tr>
<td>LAN BW</td>
<td>10Mbits/sec</td>
<td>1GBits/sec</td>
<td>1:100</td>
</tr>
<tr>
<td>Address bits</td>
<td>16-32</td>
<td>32-64</td>
<td>1:2</td>
</tr>
<tr>
<td>Users/machine</td>
<td>10s</td>
<td>1 (or < 1)</td>
<td>> 10:1</td>
</tr>
<tr>
<td>$/Performance</td>
<td>$80k</td>
<td>< $800/1000</td>
<td>100,000+:1</td>
</tr>
</tbody>
</table>

Exponential Growth

(Courtesy J. Gray)

- Performance/Price doubles every 18 months
- 100x per decade
- Progress in next 18 months = ALL previous progress
 - New storage = sum of all old storage (ever)
 - New processing = sum of all old processing

DVD Capacity

- HD-DVD: 15-20GB per layer, maximum of 40GB dual-layer discs
- Blu-Ray: 27GB per layer, 54GB dual-layer discs
- Sony plans to commercialize 4-layer 100GB Blu-Ray discs in 2007
- Sony has demonstrated 8-layer 200GB Blu-Ray discs in October of 2004
- Torok of Imperial College London
 - Asymmetric pits encode more than one bit per pit
 - Expects 4-layer 1TB discs 2010-2015

Scientific American, February 2005.
Advantages

- Wide reach: a truly global "network"
- Great bandwidth potential, technology trends:
 - "Sneaker nets" becoming more powerful
 - Storage density growth > Moore’s Law
 - Wide area bandwidth growth bound by digging ditches, launching satellites, erecting WiMax towers...
- Low cost
- Incremental deployment:
 - Classic chicken & egg problem: infrastructure, applications, users
- Good scalability

Goals

- Non-goal: compete against existing alternatives
- For the “have-not’s”: give high b/w connectivity to places that have none
- For the “have-little’s”: complement existing low-bandwidth connections
- For the “will-have’s”: foster the development of b/w-hungry applications and users

The Uganda Case

- Short fat wire:
 - Makerere University: 2 Gb/s campus-wide fiber
- Long thin wire
 - Satellite gateway to Internet: total bandwidth of Uganda: 25Mb/s
- No optical fiber links to east Africa
 - Each country: an island in the global Internet
- No optical fiber links across country
 - Each city: an island in the global Internet

<table>
<thead>
<tr>
<th></th>
<th>MUK</th>
<th>MIT</th>
<th>MUK/MIT ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>campus gateway (Mb/s)</td>
<td>2.5</td>
<td>~2,300</td>
<td>~10^3</td>
</tr>
<tr>
<td>gateway cost ($ per month)</td>
<td>$28K</td>
<td>~$80K</td>
<td>~1/3</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>$1.2K</td>
<td>$36K</td>
<td>~0.03</td>
</tr>
<tr>
<td>bandwidth cost relative to per capita GDP</td>
<td>~10^4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ET Write Home: Extreme Bandwidth/Latency Tradeoff

Radio wave messages across the stars
- Need tremendous energy
- Need an antenna the size of earth
- 10 billion billion nano-bits, all of earth’s current info within a gram of matter

Suggestion: mine ET letters in “resting points” near earth

Goals

Latency and Bandwidth

- Latency: amount of time to send a byte
- Bandwidth: bytes per second when trying to send a large amount of data

LAN

Latency and Bandwidth

WAN

Internet

“Sequential”: Extending the Internet

“Parallel”: Complementing weak links

- Non-goal: compete against existing alternatives
- For the “have-not’s”: give high b/w connectivity to places that have none
- For the “have-little’s”: complement existing low-bandwidth connections
- For the “will-have’s”: foster the development of b/w-hungry applications and users

Complementing Weak Connectivity

- Postman: high-latency high-bandwidth (HLHB)
- A modem: low-latency low-bandwidth (LLLB)
- How to combine the two to get the advantages of both?

Goals

- Non-goal: compete against existing alternatives
- For the “have-not’s”: give high b/w connectivity to places that have none
- For the “have-little’s”: complement existing low-bandwidth connections
- For the “will-have’s”: foster the development of b/w-hungry applications and users

Example Applications

- Themes
 - Bandwidth-intensive
 - Simultaneous exploitation of LLLB and HLHB links
- Applications
 - Email with large attachments (e.g., home movies)
 - Web embedded with large objects
 - Remote file system mirroring for sharing/backup
 - Peer-to-peer file sharing
 - Video “almost on-demand”
 - Certain Grid applications?
 - Distance learning (especially for disadvantaged areas)
- Infinite bandwidth: what would you do with it?
Old Netflix

- Problem: no instant gratification

Old Netflix

- Problem: no instant gratification

Old Netflix

- Problem: no instant gratification

“New Netflix”

- Encrypted content pushed via Postman
"New Netflix"

- Large home library accumulated

"New Netflix"

- User wants to see a movie

"New Netflix"

- Purchase decryption key with modem
 - (DRM needed)

"New Netflix"

- Purchase decryption key with modem
 - (DRM needed)
“New Netflix”

- Purchase decryption key with modem
- (DRM needed)
- Instant gratification (almost)

“Video Almost On-Demand”

- The point:
 - Simultaneous exploitation of LLLB and HLHB links
 - Liberal “wastage” of capacity for gaining other advantages
- Recurring central themes
 - For all applications
 - At both application- and various system-levels

Peer-to-Peer File Sharing

- LLLB: Small messages associated with search requests or content announcements
- HLHB: bulk media
- Liberal wastage of capacity: may request same data from multiple senders
- How might a peer-to-peer Netflix work?
- Would I have to send or receive 1000 disks per day?
Internet Storage

• Only half of consumers have thought about reliability of their digital photos *
• Shutterfly: order prints online, but can do more…
• Organize, backup, share, access from anywhere…
• Message: centralized storage has many advantages

Internet Storage

• Why stop at photos?
 – Music, movies, documents, emails, …
 – Organize, backup, share, access from anywhere, index, search, cross reference, “content distribution” management, …
 – All the benefits of the web: a new web!

• The problem: not enough bandwidth

Internet Storage

• Postmanet solves the bandwidth gap
• Turn home storage into a “mirror” or a “cache”

A Postmanet-Based “Public Transit” System

• Emails with home movie attachments
• Web embedded with rich media
• Remote file system mirroring/sharing
• TV/radio
• Magazines, newspapers, store catalogues (with rich media), softwares and updates

• What can you do with practically infinite bandwidth into each household?!
• Implication on ways of doing business and ways of getting information
Outline

• What is Postmanet?
• What is it good for?
 • Routing
 • End point support
 • Conclusions

(a) Centralized Routing

• Lots of obvious disadvantages
• Big advantage: one incoming disk and one outgoing disk per postman visit per site
• Minimize manual labor: assembly-line handling of DVDs
• Today: robotic arm-operated DVD readers/writers

(b) Direct Peer-to-Peer Routing

• “Opposite” of (a)
• Zero demand on an infrastructure
• Risk: too many disks sent/received per site per postman visit

(c) Multiple Data Distribution Centers

• Some amount of geography-awareness
• Limits the number of disks handled per site per postman visit
• Still need an infrastructure
An indirect Peer-to-Peer Routing system works as follows:

- A disk that lands at your house may contain data destined for others.
- You need to forward the data.
- But to whom?

- Disks = buses, messages = passengers.
- Passengers need to get on and off buses to get to their destinations...
- Potentially need to switch buses.

- How do you deal with misbehaving participants?
 - Existing Byzantine-tolerant routing protocols apply.
 - Netflix-like model of throttling service to "lazy" members.
 - Proactive replication on multiple routes.
- Misbehavior less a problem in cooperative groups.
Desired Routing Characteristics

- Small number of disks handled per site: a unique metric in Postmanet
- Small end-to-end latency
- Does not require an expensive infrastructure
- Does not burden sites with unbalanced data copying duties
- Robust when some Postmanet users misbehave
- These are conflicting goals

Which Option?

(a) is a special case of (c)
(b) is a special case of (d)

• (b,d) best if:
 - We want quick/incremental deployment…
 - Without investing in an infrastructure
 - Under light traffic
 - Inside cooperative groups
(c) and (d) can coexist:
- (d) could get things started
- (c) can be added to (d) to gradually improve service

Static Routing Topologies

- Number of disks handled per site: node degree
- End-to-end latency: graph diameter
- Best you can do: $O(1)$ degree, $O(\log N)$ hops
 - E.g., de Bruijn graphs
- Qualitative goal not new, but the quantitative tradeoffs are

Dynamic Routing

- Bus schedule problem
 - Disks=buses, messages=passengers
 - Given traffic pattern, devise bus schedule dynamically
 - Unique Postmanet metric: limit buses per bus station
- Take short cuts in a static graph when possible

The Relationship Between Static and Dynamic Routing Graphs

- Under light traffic: can achieve single-hop latencies
- Under heavy traffic
 - Few opportunities for short cuts
 - Dynamic routes degenerate to static routes
 - So static routes give latency bounds
The Relationship Between Static and Dynamic Routing Graphs

- To compute bus routes and passenger choices:
 - Need “progress metric” of passengers
 - Use “closeness” of passengers to their destinations in the underlying static graph
- Current solution: maximum weight matching on an underlying de Bruijn graph

Recurring Theme 1:
Simultaneous exploitation of LLLB and HLHB links

- LLLB:
 - traffic pattern gathered during the day
 - routes computed at centralized site
 - routes disseminated to users
 - postal labels generated by users
- HLHB:
 - bulk data picked up by postmen

Recurring Theme 2:
Liberal “wastage” of capacity

- Replicate data on disks destined for multiple paths
- Replicas can be had for “free”
- Let the buses race against each other
- Can “shoot down” passengers in transit
- Shoot-downs can also occur at app-level and end point system-level
- Shoot-downs uniquely useful in Postmanet

Outline

- What is Postmanet?
- What is it good for?
- Routing
- End point support
- Conclusions
Characteristics Unique to Postmanet

- Bursty arrival of large amounts of data
- Postal system: classic case of datagram service
- Two networks
- Delayed action and “shoot-downs”
- Storage media as wires

Recurring Theme 1:
Simultaneous exploitation of LLLB and HLHB links

- Transport- and application-level control messages travel on LLLB links
 - ACKs, NACKs, retransmission requests, shoot-downs
- Data message: choose between the LLLB/HLHB links depending on size and delivery deadline
- May send variations of a single message on both links
- May view an LLLB link as a “cache” of an HLHB link

Recurring Theme 2:
Liberal “wastage” of capacity

- Liberal and proactive replication of data on subsequent days
- Speculative transmission of anything that might get used

Recurring Theme 2:
Liberal “wastage” of capacity

- Liberal and proactive replication of data on subsequent days
- Speculative transmission of anything that might get used
Recurring Theme 2: Liberal “wastage” of capacity

- Liberal and proactive replication of data on subsequent days
- Speculative transmission of anything that *might* get used

Shoot-down
Recurring Theme 2: Liberal “wastage” of capacity

- Liberal and proactive replication of data on subsequent days
- Speculative transmission of anything that *might* get used

Related Work

- Delay-Tolerant Networks (DTNs)
 - Buses equipped with 802.11 and disks
 - Zebras gathering and exchanging migration logs with each other
 - Communicating with LEOs
 - Directional 802.11 routers running out of power
- Postmanet
 - An example of DTN, so share commonalities, e.g.: asynchronous communication
 - Different from other DTNs

Related Work

- DTNs vs. Postmanet:
 - Local vs. global
 - DTNs: ad hoc networking a key issue, Postmanet: different routing issues
 - DTNs: “challenged networks”, Postmanet: dormant in transit, abundant resources (and efficient) when connected
 - Postmanet: two networks

Related Work

- Jim Gray ships entire NFS servers filled with astronomy data
 - Need “system support” at transport and application levels
- Rover: wireless app toolkit---asynchronous API
 - Different network characteristics
- Mobile storage systems
 - Different abstractions a key
Conclusions

• The postal system has many attractive characteristics as a digital communication mechanism
• To fully realize these potentials, we need to turn it into a truly generic and transparent “network”
• Two recurring themes: exploiting two networks simultaneously and “wasting” storage to gain other advantages
• What would you do with infinite bandwidth?
• Key applications for the developing world