The Digital StudyHall

Components
- repository, phttp, EdTV

Workflows
- content capture, homework feedback
- Pedagogy research

Recurring themes
- Any-to-any communication, high bandwidth, sharing, customization, cheap, solve education problems

Principle 1: cost realism
- Schools in Bihar, Madhya Pradesh, Uttar Pradesh, and Rajasthan:
 - 63% leaking roofs
 - 58% no drinking water
 - 89% no functioning toilet
 - 27% no blackboard
 - 8% none of the above
- Weigh the cost of ICT against the above
- Cost realism crucial for scalability
Principle 1: cost realism

- phttp: low-cost network
- EdTV: low-cost networked displays
- Workflows: e.g.: minimize printing
- Cost of “wiring” a village school < $1000
- Cost of “wiring” a child < $5
- (Not included: operational cost)
- Compare this against:
 - Average daily income per person: $1 - $2
 - Not uncommon: a rural family spends 1/5 of income sending one kid to school
 - A village teacher’s daily income: $1 - $4
 - A text book in the village: $0.3

Principle 2: build “systems” that solve problems

- A lot more than connectivity
- “workflows” and pedagogy
- Work with people:
 - Headquarters staff
 - Teacher training institute volunteers
 - Village teachers
 - Students as students
 - Students as teachers
Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
- Other applications
- Conclusions

A “Learning eBay”

- Allows distributed participants to “plug themselves in”
- Matches supply and demand
- Service offerers: both volunteers and professionals
- Flexible time and location commitments by participants
- “Open source” model

- “Out-sourcing” model
- Bridge regional resource differences
- Encourages specialization, fosters efficiency
- Uniform standards and quality
- Lessen public/private school gap?

- A source of helpers: volunteers from a teacher training institute
- Volunteers: exposure to technology and real-life training
- Source of helpers: good higher-grade students
A “Learning eBay”

- Repository accessible via conventional web interface
- Repository accessible via Postmanet-enabled http (phttp)

User-generated Content Management

- Trend: blogs, pictures, video, music, wikis
- Web sites that allow ordinary people to build and share “content:” grass-roots media hybrid

Content Management Systems

- Drupal
- Plone
- Moodle

- Browser-based interface
- Publishing of stories, blogs, multimedia files, etc.
- Hierarchical classification, indexing
- Running polls, forums, downloads
- Collaboration
- Managing users and groups (permissions)
- Administration: customization and maintenance

Repository Implementation

- In the longer run: based on open source content management systems
- With modifications to work on phttp, and
- Potentially education-specific customizations
Recurring theme: any-to-any communication

- Customized content, customized schedule
- Build “systems,” not just providing connectivity

Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
- Other applications
- Conclusions

Low-latency low-bandwidth link

- India cell phone tele-density: 2.5% as of 2003
- Directional 802.11: a tower alone costs $2500
- Our current choice: packet radio (ham radio)
- Pro: range, cost; Con: low bandwidth

Phttp-enabled repository

- Put requests, replies, and server script fragments on DVDs
- Supported operations:
 - Pull, push, send, browse (directory hierarchy), and search

Source: http://smallwonderlabs.com
Difference from offline browser

- Offline browsers
 - Eventual connection, no support for server scripts
- Phttp
 - May never be connected, explicit migration of server script fragments

DVD Robot

- Why DVDs? Capacity, cost, weight, …
- Robot automation

DVD Robot

- Why DVDs? Capacity, cost, weight, …
- Robot automation

phttp: (a) publish

- Mass-produces boot-strap DVDs
- DVDs contain identical metadata plus some scripts
- Minimal manual intervention
phttp: (b) data reaches a village

- Data automatically copied from incoming DVD onto local disk
- DVD erased
- No manual intervention beyond DVD insertion

phttp: (c) village interaction

- Village staff has access to two views
 - Subset of repository content
 - Locally available content

phttp: (c) village interaction

- Locally stashed scripts allow interactions
 - Browse, search, download requests, upload requests
- Requests and data to be uploaded are buffered on local disk

phttp: (d) data leaves village

- Requests and data buffered on local disk automatically burned onto previously erase DVD
- No manual intervention beyond removing DVD from the box and handing it to the postman
phttp: (e) data arrives at headquarters

- (1) robot copies data from incoming stack to local disk buffer
- (2) erases stack to form a blank DVD stack

phttp: (a) data leaves headquarters

- Robot generates new outgoing stack of DVDs, using the blank stack and images, generated in previous step
- Outgoing DVDs contain different content

The key is transparency

- What’s wrong with doing phttp manually?
- It’s only 6 villages after all
The key is **transparency**

- Transparency and efficiency needed for:
 - Scale up
 - Handling exceptional events
 - Splitting server scripts

Complement with low-latency network

- Catalog of metadata
- Small requests, acks, NAKs, retransmission requests, etc.

Other phttp servers

- Asynchronous services
- With possible synchronous refinements (google)
- Some service-specific scripts executed at both ends
- Lots of service-neutral infrastructure shared

Recurring theme: any-to-any communication

- Customized content, customized schedule
- High-bandwidth
- Cheap
Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
- Other applications
- Conclusions

Content

- Flash courseware: good, but time- and labor-intensive
- Need to reach “critical mass” quickly or we may never will

Lecture capture

- Replaying captured lectures, by itself, will not suffice, but
- It can be an important part of a bigger solution
- (We will talk about other parts of the solution)

Real-time MPEG4 encoders

- 720x480 (DVD quality), DivX codec
- 30fps generates 1GB/hour
- 5fps generates 250MB/hour
Real-time MPEG4 encoders

- 720x480 (DVD quality), DivX codec
- 30fps generates 1GB/hour
- 5fps generates 250MB/hour

Screen Capture Movie

- 1024x768, DivX codec
- 5fps, 100kbps, 50MB/hour

Still camera: periodic shutter release

- 2048x1360
- 6 seconds per frame, 180MB/hour

Processing

- Passive capturing
- Modest post-processing
 - Breaking down into coarse-grained snippets
 - Annotation
 - Potential aid by lecturer during lecturing
- Staging lectures for captures
 - In Hindi
 - Volunteers from the teacher training institute
Mix and match snippets

- Simple editor that makes “super objects” out of sub-segments of existing objects

Other content

- Homework and feedback (more later)
- Asynchronous question and answer sessions
- Student-authored content
- Contributions from elsewhere
- Multiple centers of content accumulation
 - A peer-to-peer architecture of the repository

Recurring Theme: any-to-any communication

- Customized content, customized schedule
- High bandwidth
- Build “systems,” not just providing connectivity
- Cheap

Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
- Other applications
- Conclusions
The display problem

- Additional computer displays
- Projectors
- Expense and power consumption

EdTV components ("output")

- Graphics card with RCA/S-Video output
- Small TV signal transmitter
- A 12-inch TV set burns 20W

EdTV ("output")

- Graphics card with RCA/S-Video output
- Small TV signal transmitter
- A 12-inch TV set burns 20W
EdTV (“output”)

- Extra graphics cards, sound cards, and transmitters for extra channels

EdTV leaving the classroom

- Kids work during the day
- (50% attendance during mango-picking season)
- Customize EdTV schedule: catch up at nights
EdTV leaving the classroom

| “Same Language Subtitling”
| Literacy skills of “early literates” low
| Builds on people’s existing knowledge of lyrics: anticipate subtitles and read along, inherent repetitions help
| General idea of leveraging popular culture

| Song and dance by school children
| “Same Language Subtitling”
| Helps illiterate (or semi-literate) parents to learn
| Why would this be engaging?
| A “holistic” education to raise kids’ enthusiasm for schools
| Parents’ enthusiasm of seeing their own kids on EdTV
| Kids’ intrinsic desire to perform
| Competition and prize to further raise interest (“village idol”)
| Village-customized, as opposed to national TV
| Other “applications” later…

EdTV is not TV

| TVs have a bad reputation as an education tool
| TVs are “mass media devices”
| Small number of content producers
| Massive number of passive content consumers
| One-way: no interaction
| Computer displays: “personal media devices”
| Any-to-any communication
| Content production: freedom of who, what, when
| EdTV: a compromise in between
| Much closer to the “personal device” end
| Village-, teacher-, and student-specific customization

| Consider example:
| Song and dance by school children
| “Same Language Subtitling”
| Helps illiterate (or semi-literate) parents to learn
| Villagers can’t put their kids on national TV
| But they can be on EdTV

EdTV is not WebTV

- Similar parts of the philosophy:
 - Leverage large install base of legacy devices
 - Leverage familiar usage metaphor
 - Introduce new applications and services
 - Keep cost down
- Different:
 - EdTV not as personal as WebTV
 - Not meant for the same kinds of applications

EdTVs are not kiosks

- Similar part of philosophy:
 - Aggregate demand
- EdTV advantages:
 - Access from the convenience of homes
 - Open a portal, or bring a face, into a poor household, for new applications and services
 - Will speculate on some later
 - Sharing
- EdTV disadvantage:
 - No privacy
 - But even that could be a plus...

Architecture for demand aggregation

- Bottom tier: cheap, pervasive, specialized, simple, familiar metaphor plus new services
- Middle tier: shared, more expensive, more general, more capable, expendable data
- Top tier: professionally managed, “ultimate truth” of data
Extending EdTV range

- Used VCRs, balloons, directional 802.11, ...

EdTV “input” devices

- A ham “remote”: a simple transmitter that emits several command signals: a couple bucks
- Same ham receiver at base-station that handles both:
 - Input from ham remote, and
 - Input from long-distance communication with headquarters
- TV and radio control signals: ways of bridging the last mile

EdTV “input” devices

- Walkie talkies, microphone, voice recognition
- Use Hindi
- Paid $20 for the pair but can do better

EdTV “input” devices

- Walkie talkies, microphone, voice recognition
- Use Hindi
- Paid $10 apiece but can do much better
Low-tech “input” devices

- Replace voice recognition with human “operator” (a DJ)
- Determine local EdTV schedule at a “town hall” meeting

The Kothmale Community Radio (Sri Lanka)

- Locals request information
- Radio “DJs” browse the net
- Does translation
- Broadcasts in daily program
- Provides printouts

EdRadio

- Radios even more pervasive
- Direct computer-to-air (can be without Kothmale human operator)
- Customized local content: songs sung in schools, teaching English, recordings of “town hall meetings,” kids being “DJs for the day,” text-to-voice of content relevant to locals, …

Recurring theme:
any-to-any communication

- Customized content, customized schedule
- High bandwidth
- Build “systems,” not just providing connectivity
- Cheap
Goal: start schools where there's none

- Assume minimum staff expertise beyond operating equipment
- Minimum interaction needed: homework graded by outside staff

Obvious solution too expensive

- Village
 - Scan homework in
 - Transmit to headquarters
- Headquarters
 - Print it out
 - Grade it on paper
 - Scan it
 - Transmit back to villages
- Village
 - Print it out
- Problems
 - Expensive computer papers
 - Expensive printer cartridges
 - Some printing ok, but not massive amount of printing

The homework workflow (1): digitizing

- Camera instead of scanner: speed, versatility, portability, simple power requirements
- Microphone: digitize voice questions
- Webcam: video for a personal touch, not strictly necessary
The homework workflow (1): digitizing

- Scribble homework on paper as kids used to
- (cheap papers available)
- Decent resolution

The homework workflow (2): transmission

- Phttp ideal for this purpose:
 - Homework intrinsically asynchronous
 - Large bandwidth, virtually free: good for rich media

The homework workflow (3): grading

- Step 3A: download submissions

- Step 3B: Batch image editing software + tablet pen
The homework workflow (3): grading

- Step 3B: Batch image editing software + tablet pen

- Step 3C: produce a feedback video with screen capture
 - "Collective" feedback
 - Individualized feedback
 - Both types are customized
 - Voice annotation optional: can automatically produce voice-less video

- Step 3D: upload feedback, push to villages
The homework workflow (4): feedback

- Collective feedback played to all students on EdTV in classroom
- Use it to instigate group learning
- Individualized feedback “scheduled” at convenient times on EdTV
 - In-classroom, or even during evenings
 - Pause, rewind, zoom, etc. might prove useful
 - Review graded raw images if necessary
- Showcases customized content/control of EdTV

Possibly complemented by:
- Some amount of printing
- Standardized “answer books” prepared ahead of time (also printed on cheap papers)
- Combine low-tech and high-tech

Implications (1): better experience

- Not only comparable to what urban kids receive,
- But also better than existing homework feedback experience: more personal, richer
- Same workflow useful for less structured question/answer sessions

Implications (2): content reuse

- Permanent storage, reuse, and sharing of prior interactions
Implications (2): content reuse

- Two kinds of interactions:
 - **Instant feedback, but not specific**
 - **Specific feedback, but not instantaneous**

Recurring theme: any-to-any communication

- Customized content, customized schedule
- High bandwidth
- Build “systems,” not just providing connectivity
- Cheap

Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- **Pedagogy**
- Other applications
- Conclusions
Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
 - “Tutored Videotape Instruction” (TVI)
 - Later TVI experiences: homework and other details
 - TVI and the Digital StudyHall
 - Learning Science committee recommendation: a learning science testbed
- Other applications
- Conclusions

Two different questions

- Given a reasonably competent teacher, can any technology better a blackboard?
- Where there’s no teacher at all, how do you make the most out of what you have?

TVs as an education tool

- Early promise of TVs as an education tool
- Subsequent results mixed
- Conventional TVs: inflexible---not good at capitalizing unexpected, unplanned opportunities
- Characteristic weakness of television:
 - Lack of personal interaction
 - Does not adjust to individual differences
 - Tends to encourage a passive form of learning
- Difference between “mass media” and “personal media:” a theme of this class

“Tutored Videotape Instruction”

- Education research shows effectiveness of:
 - Fostering interpersonal discourse,
 - Social construction of knowledge.
 - Better than broadcast of information
- Common sense behind TVI (1970s)
 - Lectures provide depth and continuity
 - Discussions make lectures respond to individual needs and differences
• Stanford -> Santa Rosa plant of HP
• Minimally edited videos of unrehearsal lectures
 – Easy to make

“Tutor” job:
– Initiate and encourage stopping the videotape for discussions
– Rely on dynamic interaction to stimulate intrinsic interest
– Interfacing with on-campus instructor

TVI details:
homework and exams

• Students required to complete the same homework
• Homework returned to Stanford in about 1 week
• Graded by the same teaching assistant
• Required to come to the campus to take the same exams

TVI: tutor qualifications

• Important:
 – Sensitive to students
 – Ability to draw them into fruitful discussions
 – Interest in helping students
 – Personal interest in the subject
 – Some competence
 – Compensation
 – Being a good liaison with the “parent” school

• Not important
 – Recent exposure to the course
 – Good performance in the course
• Tutors shouldn’t be in a position of authority
TVI details

- Group size: 3-10 optimal
- Some training for teachers and tutors
- Unrehearsed, unedited video tapes have advantages, compared to scripted content
 - Also showed disadvantages in later experiences
- Need to take care of administrative details in a timely fashion

TVI results

- Caveat: data do not yet permit a rigorous statistical test

TVI results

TVI results

- Hawthorne effect
 - Later experiences suggest that a Hawthorne effect was present for about 5 weeks, 1/3 – ½ of a term
 - The superior TVI performance consistent for many years
- Data do not yet permit a rigorous statistical test
- Can’t generalize to subject areas other than engineering and science
- Further extended to include plants in San Diego and Albuquerque

- TVI students drawn from the same population as the other non-campus students
Analysis of TVI

- “Information transfer” metaphor being supplanted by “constructivism”
- Public conjecture and feedback from others help refine ideas, often via controversy
- Acts of articulation encourage formation of conceptual framework
- Formation of positive group dynamic: encouragement, tutoring, sharing, communication and team skills
- Increased level of attention and motivation

Conclusions

- Although not sufficient by themselves, captured lectures are a good foundation
- Instigating interaction can significantly enhance effectiveness
- Successful instigation can be effected with relatively simple means
- Group learning can play a key role
- TVI draws on the substantial (if latent) interest in tutoring

Ambition

- What’s the ultimate scalability bottleneck of the Digital StudyHall?
 - Not computers
 - Not bandwidth
 - Probably not even money (to some extent)
 - It’s the skilled man power!
- Ultimate ambition:
 - To turn every kid into both a teacher and a student
 - The ultimate peer-to-peer system!

Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
 - “Tutored Videotape Instruction” (TVI)
 - Later TVI experiences: homework and other details
 - TVI and the Digital StudyHall
 - Learning Science committee recommendation: a learning science testbed
- Other applications
- Conclusions
DTVI

- DTVI: connecting TVI participants virtually
- Study involving 700 university students
- DTVI as good as TVI

TVI at UW

- Intro CS classes at UW -> community colleges
- Community colleges assign grades and grant credit
- Windows Media Player showing Powerpoint slides plus a small video window of the instructor

UW: assignments

- Centralized grading model, using emails
- Pros
 - Want the model to work at places where there's no staff support (not the case)
 - Economy of scale
 - Uniform standards
 - TVI model: tutors shouldn't have grading authority
 - Instructors initially happy
- Cons
 - Instructors already had authority
 - Significant delays
 - Grading problems (misgraded problems, delays) magnified
 - Hard to recruit TAs
 - Students become resentful
 - Instructors don't have a feel for student performance
- Stanford vs. UW: who assigns grades and credits

Homework for us

- Bigger difference
 - UW: community college graders vs. UW graders
 - New village schools: no grader vs. Lucknow graders
 - Necessity vs. luxury: lower bar to pass
- Significantly richer feedback experience
 - Not just feedback from a different place, but better feedback
- Homework feedback becomes part of the interaction instigation process
- Nevertheless, need to be sensitive to the UW homework issues
Things that piss people off

- Excellent negative experiences, BTW!
- Bottom line: many many factors that can affect the effectiveness!
 - Be careful when assigning blame
- Time pressure: 3 hrs → 4.5 hrs
- Instructor mannerism
- Tutor effectiveness
- Errors and delays in homework grading
- Less live assistance
- Perception and expectation
 - The “opposite” of Hawthorne effect: 2nd class citizens

Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
 - “Tutored Videotape Instruction” (TVI)
 - Later TVI experiences: homework and other details
 - TVI and the Digital StudyHall
 - Learning Science committee recommendation: a learning science testbed
- Other applications
- Conclusions

TVI and StudyHall

- Challenges:
 - Different audience
 - Different subjects
 - Unstructured “discussion” may not work
- Resources:
 - Digital technologies beyond pause-and-resume
 - Skilled and cooperative headquarters staff
 - A digital repository that “remembers everything”
 - Village staff of varying levels of skills

Example types of instigations for the StudyHall

- A 5-minute in-class quiz
 - Conducted in headquarters lectures
 - Graded and feedback provided on the spot
 - All captured and replayed
 - Same quiz administered in villages
- Homework feedback (in rich media, as discussed earlier) integrated into regular lectures
- Village staff as “pattern recognizers” in a “program”
Interactions in StudyHall

- Encourage students to help students
- Harvest “leaders”
 - But be careful not to produce consistently passive followers
- Harvest upperclassmen
- Communication between urban and rural students
- Foster positive group dynamic
- Encourage social, artistic, entertainment exchanges

Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
 - “Tutored Videotape Instruction” (TVI)
 - Later TVI experiences: homework and other details
 - TVI and the Digital StudyHall
 - Learning Science committee recommendation: a learning science testbed
- Other applications
- Conclusions

How people learn: the three key principles

- Consider pre-existing models of thinking
- Frequent formative assessments
- Address deeper conceptual frameworks, not just facts

Disconnect between research and practice

- Research: not always in realistic settings
- Practice: teachers, parents, administrators, policy-setters, have their own obligations
<table>
<thead>
<tr>
<th>"Committee" recommendations</th>
<th>"Committee" recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Conduct research in teams that combine researchers and practitioners</td>
<td>• Development and maintenance of an interactive communications site</td>
</tr>
<tr>
<td>• Video-taped model lessons</td>
<td>– Provides information about design principles of effective curricula</td>
</tr>
<tr>
<td>– Evaluate video-taped model lessons</td>
<td>– Submit video-taped lessons. Evaluate in terms of the principles of learning</td>
</tr>
<tr>
<td>– Understand group processes</td>
<td>– Comprehensive evaluation process, not just rank-order of curricula</td>
</tr>
<tr>
<td>– Use them as “anchors” for teacher training</td>
<td>– Connect the site to teacher training colleges</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provides support, feedback, and an opportunity for discussion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Partnerships (and people relationships)</td>
</tr>
<tr>
<td></td>
<td>– Develop ongoing relationships between “labs” and a student body</td>
</tr>
<tr>
<td></td>
<td>• Aided by the use of a videotaped record</td>
</tr>
<tr>
<td></td>
<td>– Investigate the potential benefits of collaborative learning, and understand its potential</td>
</tr>
<tr>
<td></td>
<td>drawbacks</td>
</tr>
<tr>
<td></td>
<td>– Invite teachers to think of themselves as scientists</td>
</tr>
<tr>
<td></td>
<td>– Involve parents and other community stakeholders</td>
</tr>
<tr>
<td></td>
<td>– Influence local governments</td>
</tr>
<tr>
<td></td>
<td>– Influence the media and the public</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Initial stage: grants and donations</td>
</tr>
<tr>
<td></td>
<td>• An “open source” model</td>
</tr>
<tr>
<td></td>
<td>• Turning over the operation to local entities</td>
</tr>
<tr>
<td></td>
<td>• “Cross-subsidize” with synergistic for-profit applications</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
- Other applications
- Conclusions

The “Health Care eBay”

- Similar challenges as faced by education
 - Lack of trained professionals in rural areas
 - Stark tradeoff of how to spend resources
 - Bill Gates: “poor people need medicine and not computers.”
 - Not necessarily a zero-sum game: value of early care
- A health care eBay, similar to the learning eBay metaphor
 - More of an information delivery mechanism initially
 - Problem with means such as pamphlets: lack of interaction and pinpoint relevance
 - Combine asynchronous and synchronous interactions

Precedents and What’s New

- Existing remote diagnosis systems and emailing doctors
- Pervasive communication mechanism
- Cheap and high-bandwidth
- A globally accessible “clearinghouse” that matches “supplies” and “demands”

Potential advantages

- Harvest “fine-grained” volunteerism (potentially from overseas)
- A good browse and search interface for prioritizing, organizing, and improving efficiency
- Easy access to early care can reduce the cost of the health care system
 - Due to extreme pervasiveness of a communication mechanism
A voice mail application

- The poor spends disproportionately more on communication
- Variations of voice/email have always proven compelling
- What we do: turn your TV into a voice mail phone

A voice mail application

- Use a walkie talkie to “activate” a recording mode
- Have what is spoken captured verbatim
- The bits go out on one of the radio or postal links
- Incoming voice played over TV

A voice mail application

- With EdTV: convenience, without: privacy
- With Postmanet: cheap, pervasive, infinite bandwidth, With radio: low latency
- The repository abstraction: easy to build the app

A shopping application

- An example shared EdTV experience
- A human “DJ” surfs a shopping site
- Villagers jot down desired transactions using paper and pencil
- Next day: villagers hand the papers to the DJ, who performs data entry

The Digital StudyHall
A shopping application

- Information “hookup” prior to exchanges of physical goods and services
- Can be done by a third-party transporter

Shopping: EdTV is not TV

- Regionally customized content
- Requires no infrastructural support:
 - No phone, no conventional network, no cooperation with existing TV stations

Shopping: EdTVs are not kiosks

- Convenience: Couch potatoes, not “kiosk” potatoes
- Postmanet: cheap and improved experience due to high bandwidth, appropriately asynchronous
- Shared experience

Outline

- Introduction
- The learning eBay
- phttp
- Content capture
- EdTV
- Homework
- Pedagogy
- Other applications
- Conclusions
The “big picture”

- Components: repository, phttp, EdTV
- “Workflows:” content capture, homework feedback
- Pedagogy research

Synergy: phttp + repository

- A simple distributed file system analogy
- Generic abstraction that can support all manners of shared applications (without a conventional network)

- A network analogy: a “network with memory”
- Why not direct peer-to-peer transfer between villages?
Synergy: phttp + repository

- A simple distributed file system analogy
- A network analogy: a “network with memory”
- Why not direct peer-to-peer transfer between villages?

Synergy: phttp + EdTV

- A natural two-hop “network”
- The phttp “hop”: pervasive, high-bandwidth, cheap, asynchronous
- The EdTV “hop”: cheap end devices, bridging last mile

Synergy: phttp + EdTV

- A natural two-hop “network”
- The phttp “hop”: pervasive, high-bandwidth, cheap, asynchronous
- The EdTV “hop”: cheap end devices, bridging last mile

Synergy: repository + EdTV

- The repository abstraction makes it easy to build shared EdTV applications, like voice mail
Synergy: repository + EdTV

- The repository abstraction makes it easy to build shared EdTV applications, like voice mail

Recurring themes

- Any-to-any communication, high bandwidth, sharing, customization, cheap, solve education problems